Chapter 4

Logistic Regression

4.1 Definition

We know that regression is for predicting real-valued output Y, while classification is for pre-
dicting (finite) discrete-valued Y. But is there a way to connect regression to classification? Can
we predict the “probability” of a class label? The answer is generally yes, but we have to keep
in mind the constraint that the probability value should lie in [0, 1].

Definition 4: (Logistic Regression)
Assume the following functional form for P(Y | X):

1
PY=1|X)= , 4.1
( [ X) 1 + exp(—(wo + >, wiX;)) (4.1)
1
PY=0]|X)= . 4.2
In essence, logistic regression means applying the logistic function o(z) = m to a linear

function of the data. However, note that it is still a linear classifier.

Diving in the Math 6 - Logistic Regression as linear classifier
Note that P(Y = 1| X) can be rewritten as

eXp(U}O + Z,L ’ZUZXZ)

PlY=1|X)= .
( | X) 1+ exp(wo + >, w; X;)

We would assign label 1 if P(Y =1 | X) > P(Y = 0| X), which is equivalent to

exp(wo I Z UJZXZ) >1< wy+ Z w; X; > 0.

Similarly, we would assign label 0 if P(Y = 1| X) < P(Y = 0| X), which is equivalent to

exp(wo + Z U}zXZ) <1 wy+ Z w; X; < 0.

In other words, the decision boundary is the line wg + ), w; X;, which is linear.
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4.2 Training logistic regression

Given training data {(z;, y;) }}_; where the input has d features, we want to learn the parameters
Wo, Wi, . . ., wq. We can do so by MCLE:

WyoLE = arg maxHP(y(i) | 29 w). (4.3)
Y=l

Note the Discriminative philosophy: don’t waste effort learning P(X), focus on P(Y | X) - that’s
all that matters for classification! Using (4.1) and (4.2), we can then compute the log-likelihood:

=In (H Py | 29, w))

n

_Z[ w0+zw, — In( 1+expwo+zw$ : (4.4)

7=1

There is no closed-form solution to maximize {(w), but we note that it is a concave function.

Definition 5: (Concave function)
A function [(w) is called concave if the line joining two points [(wy),l(wy) on the function
does not lie above the function on the interval [wy, ws].

I(w)

Wi, w W

Equivalently, a function [(w) is concave on [wy, ws] if
Itz 4+ (1 — t)xg) > tl(x1) + (1 — t)l(xs)

for all z1, 9 € w1, wy] and t € [0, 1]. If the sign is reversed, [ is a convex function.
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Diving in the Math 7 - Log likelihood of loglstlc re ressmn is concave
For convenience we denote x(()) =1, so that wy + Zi:j = wlz®,
We first note the following lemmas:

1. If f is convex then —f is concave and vice versa.

2. A linear combination of n convex (concave) functions fi, fa, ..., f, with nonnegative
coefficients is convex (concave).

3. Another property of twice differentiable convex function is that the second derivative
is nonnegative. Using this property, we can see that f(z) = log(1 + exp z) is convex.

4. If f and g are both convex, twice differentiable and ¢ is non-decreasing, then g o f is
convex.

Now we rewrite [(w) as follows:
w) =Y yDwz® —log(1 + exp(w’z?))
= Zy’) T Zlog 1 + exp(w?z®))
i=1

=2 v i(w) Zg filw
T

where f;(w) = wTz® and g(z) = log(1 + exp 2).

fi(w) is of the form Az + b where A = 2 and b = 0, which means it’s affine (i.e., both
concave and convex). We also know that g(z) is convex, and it’s easy to see g is non-
decreasing. This means g(f;(w)) is convex, or equivalently, —g(f;(w)) is concave.

To sum up, we can express [(w) as

Zy”fz Z

-~ -~
concave concave

hence I(w) is concave.

As such, it can be optimized by the gradient ascent algorthim.

Algorithm 7: (Gradient ascent algorithm)
Initialize: Pick w at random.

Gradient: OE(w) 9E(w) OB (w)

w w w
E = .
vw (UJ) ( 8w0 ) awl ) 9 awd )

Update:
Aw =V, E(w)
uft ) el 422,
8U)i

where 1 > 0 is the learning rate.
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In this case our likelihood function is specified in (4.4), so we have the following steps for training
logistic regression:

Algorithm 8: (Gradient ascent algorithm for logistic regression)
Initialize: Pick w at random and a learning rate 7.
Update:

e Set an € > 0 and denote

(2

PO =11 20w

(t

oy __ld + 72
1+ exp(uwg + Z] 1 W5 g

)
@y
i)

(t+1)

o Iterate until [w( ™ — w{’| < e

wi ™ —w +0y [y@ —P(y¥ =1 x("%w(t))] :

i=1
e For k=1,...,d, iterate until |w, (+D) _ wk \ <e
(t+1 <—’LU +UZ{I? [ . yz)_1|$ (t))i|
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