
Chapter 4

Logistic Regression

4.1 Definition

We know that regression is for predicting real-valued output Y , while classification is for pre-
dicting (finite) discrete-valued Y . But is there a way to connect regression to classification? Can
we predict the “probability” of a class label? The answer is generally yes, but we have to keep
in mind the constraint that the probability value should lie in [0, 1].

Definition 4: (Logistic Regression)
Assume the following functional form for P (Y | X):

P (Y = 1 | X) =
1

1 + exp(−(w0 +
∑

iwiXi))
, (4.1)

P (Y = 0 | X) =
1

1 + exp(w0 +
∑

iwiXi)
. (4.2)

In essence, logistic regression means applying the logistic function σ(z) = 1
1+exp(−z) to a linear

function of the data. However, note that it is still a linear classifier.

Diving in the Math 6 - Logistic Regression as linear classifier
Note that P (Y = 1 | X) can be rewritten as

P (Y = 1 | X) =
exp(w0 +

∑
iwiXi)

1 + exp(w0 +
∑

iwiXi)
.

We would assign label 1 if P (Y = 1 | X) > P (Y = 0 | X), which is equivalent to

exp(w0 +
∑
i

wiXi) > 1⇔ w0 +
∑
i

wiXi > 0.

Similarly, we would assign label 0 if P (Y = 1 | X) < P (Y = 0 | X), which is equivalent to

exp(w0 +
∑
i

wiXi) < 1⇔ w0 +
∑
i

wiXi < 0.

In other words, the decision boundary is the line w0 +
∑

iwiXi, which is linear.
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4.2 Training logistic regression

Given training data {(xi, yi)}ni=1 where the input has d features, we want to learn the parameters
w0, w1, . . . , wd. We can do so by MCLE:

ŵMCLE = arg max
w

n∏
i=1

P (y(i) | x(i), w). (4.3)

Note the Discriminative philosophy: don’t waste effort learning P (X), focus on P (Y | X) - that’s
all that matters for classification! Using (4.1) and (4.2), we can then compute the log-likelihood:

l(w) = ln

(
n∏
i=1

P (y(i) | x(i), w)

)

=
n∑
i=1

[
y(i)(w0 +

d∑
j=1

wix
(i)
j )− ln(1 + exp(w0 +

d∑
j=1

wix
(i)
j ))

]
. (4.4)

There is no closed-form solution to maximize l(w), but we note that it is a concave function.

Definition 5: (Concave function)
A function l(w) is called concave if the line joining two points l(w1), l(w2) on the function
does not lie above the function on the interval [w1, w2].

Equivalently, a function l(w) is concave on [w1, w2] if

l(tx1 + (1− t)x2) ≥ tl(x1) + (1− t)l(x2)

for all x1, x2 ∈ [w1, w2] and t ∈ [0, 1]. If the sign is reversed, l is a convex function.
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Diving in the Math 7 - Log likelihood of logistic regression is concave
For convenience we denote x

(i)
0 = 1, so that w0 +

∑d
i=j wix

(i)
j = wTx(i).

We first note the following lemmas:

1. If f is convex then −f is concave and vice versa.

2. A linear combination of n convex (concave) functions f1, f2, . . . , fn with nonnegative
coefficients is convex (concave).

3. Another property of twice differentiable convex function is that the second derivative
is nonnegative. Using this property, we can see that f(x) = log(1 + exp x) is convex.

4. If f and g are both convex, twice differentiable and g is non-decreasing, then g ◦ f is
convex.

Now we rewrite l(w) as follows:

l(w) =
n∑
i=1

y(i)wTx(i) − log(1 + exp(wTx(i)))

=
n∑
i=1

y(i)wTx(i) −
n∑
i=1

log(1 + exp(wTx(i)))

=
n∑
i=1

y(i)fi(w)−
n∑
i=1

g(fi(w)),

where fi(w) = wTx(i) and g(z) = log(1 + exp z).
fi(w) is of the form Ax + b where A = x(i) and b = 0, which means it’s affine (i.e., both
concave and convex). We also know that g(z) is convex, and it’s easy to see g is non-
decreasing. This means g(fi(w)) is convex, or equivalently, −g(fi(w)) is concave.
To sum up, we can express l(w) as

l(w) =
n∑
i=1

y(i)fi(w)︸ ︷︷ ︸
concave

+
n∑
i=1

−g(fi(w))︸ ︷︷ ︸
concave

,

hence l(w) is concave.

As such, it can be optimized by the gradient ascent algorthim.

Algorithm 7: (Gradient ascent algorithm)
Initialize: Pick w at random.
Gradient:

∇wE(w) =

(
∂E(w)

∂w0

,
∂E(w)

∂w1

, . . . ,
∂E(w)

∂wd

)
.

Update:

∆w = η∇wE(w)

w
(t+1)
t ← w

(t)
i + η

∂E(w)

∂wi
,

where η > 0 is the learning rate.
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In this case our likelihood function is specified in (4.4), so we have the following steps for training
logistic regression:

Algorithm 8: (Gradient ascent algorithm for logistic regression)
Initialize: Pick w at random and a learning rate η.
Update:

• Set an ε > 0 and denote

P̂ (y(i) = 1 | x(i), w(t)) =
exp(w

(t)
0 +

∑d
j=1w

(t)
j x

(i)
j )

1 + exp(w
(t)
0 +

∑d
j=1 w

(t)
j x

(i)
j )

.

• Iterate until |w(t+1)
0 − w(t)

0 | < ε:

w
(t+1)
0 ← w

(t)
0 + η

n∑
i=1

[
y(i) − P̂ (y(i) = 1 | x(i), w(t))

]
.

• For k = 1, . . . , d, iterate until |w(t+1)
k − w(t)

k | < ε:

w
(t+1)
k ← w

(t)
k + η

n∑
i=1

x
(i)
j

[
y(i) − P̂ (y(i) = 1 | x(i), w(t))

]
.
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